
VI. HAAR WAVELET AND MULTIRESOLUTION ANALYSIS

In this chapter we will look at a specific Multiresolution Analysis, which is related

to the Haar wavelet introduced in Chapter 3. Recall that in Example 1 of Chapter 5,

we defined a sequence of subspaces Vn of L2(R). In fact, for any n ∈ Z, we defined

a subspace Vn of L2(R) such that Vn = {f ∈ L2(R)
∣∣for any j ∈ Z, f |[ j

2n , j+1
2n ) is

constant }.

We discussed some of their properties in Lemma 1 of Chapter 5. By definition of

Multiresolution Analysis given in Chapter 5, we see that the sequence of subspaces

defined above is indeed a Multiresolution Analysis.

For such a sequence ...V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ..., we can define the orthogonal

complement of V0 in V1 and call it W0. Namely, W0 = V1 ª V0. Equivalently,

V1 = V0 ⊕W0. In general, since by Lemma 1of Chapter 5, for any n ∈ Z, we have

Vn ⊂ Vn+1, so we can define the orthogonal complement of Vn in Vn+1, we call it

Wn. Namely, Wn = Vn+1 ª Vn. Equivalently, Vn+1 = Vn ⊕Wn.

We want to investigate the orthogonal projections of any function in L2(R) onto

subspaces Vn and Wn. To this end, we need to find for each of these subspaces

a complete orthonormal system. So far, we have already obtained a complete

orthonormal system for V0. We repeat the result here.

Lemma 1. For any n ∈ Z, let Vn = {f ∈ L2(R)
∣∣for any j ∈ Z, f |[ j

2n , j+1
2n ) is

constant }. If

ϕ(x) =

{
1 0 ≤ x < 1

0 otherwise

then ϕ(x) ∈ V0 and {ϕ(x− l)|l ∈ Z} is a complete orthonormal system of V0.

Next lemma shows that Haar wavelet has something to do with a complete

orthonormal system for W0.

Lemma 2. For any n ∈ Z, let Vn = {f ∈ L2(R)
∣∣for any j ∈ Z, f |[ j

2n , j+1
2n ) is

constant } and Wn = Vn+1 ª Vn.
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If

H(x) =





1 0 ≤ x <
1
2

−1
1
2
≤ x < 1

0 otherwise

then H(x) ∈ W0 and {H(x− l)|l ∈ Z} is a complete orthonormal system of W0.

Proof. We first compute to get that for each l ∈ Z,

H0,l = H(x− l) =





1 l ≤ x < l +
1
2

−1 l +
1
2
≤ x < l + 1

0 otherwise

First of all, by definition of Vn, we see that H(x− l) ∈ V1 for each l ∈ Z. Secondly,

for any f ∈ V0, by definition, f |[j,j+1) is a constant for each j ∈ Z. Let f |[j,j+1) = aj

for each j ∈ Z, then

〈f, H0,l〉 =
∫ l+ 1

2

l

aldx +
∫ l+1

l+ 1
2

(−al)dx =
1
2
(al − al) = 0

Hence H(x − l) ∈ V1 ª V0 = W0 for each l ∈ Z. Lastly, since {H(x − l)|l ∈ Z} =

{H0,l|l ∈ Z} is a subset of a orthonormal system {Hn,l|l, n ∈ Z} we discussed in

Chapter 3, so we only need to show that {H(x−l)|l ∈ Z} = {H0,l|l ∈ Z} is complete.

By Lemma 4 in Chapter 1, we only need to show that for any f ∈ V1 ª V0 = W0,

||f ||22 =
∑

l∈Z
|〈f, H0,l〉|2.

Since f ∈ V1, we can let f |[ j
2 , j+1

2 ) = bj for each j ∈ Z. By Lamma1, {ϕ(x− l)|l ∈
Z} is a complete orthonormal system of V0, so for any l ∈ Z, 〈f, ϕ(x− l)〉 = 0. This

means b0+b1
2 = 0, b2+b3

2 = 0,...,in general, for any l ∈ Z, we have

b2l + b2l+1

2
= 0.

On the other hand, we can compute to get that ||f ||22 =
∑

l∈Z
1
2 |bj |2, 〈f, H0,0〉 =

b0−b1
2 , 〈f, H0,1〉 = b2−b3

2 ,...,in general, for any l ∈ Z,

〈f,H0,l〉 =
b2l − b2l+1

2
.

Thus, |〈f, H0,0〉|2 = |b0|2, |〈f,H0,1〉|2 = |b2|2,...,in general, for any l ∈ Z,

|〈f,H0,l〉|2 = |b2l|2.
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Hence, for any f ∈ V1 ª V0 = W0,

||f ||22 =
∑

l∈Z
|〈f, H0,l〉|2.

¤

We still need to get complete orthonormal systems for each Wn and Vn. recall

by Lemma 1 of Chapter 5, for any n ∈ Z, f(x) ∈ Vn ⇐⇒ f(2x) ∈ Vn+1. We will

see that Wn’s share the same property.

Lemma 3. Let Vn and Wn be defined above, then for any n ∈ Z,

f(x) ∈ Wn ⇐⇒ f(2x) ∈ Wn+1.

Proof. Fix any n ∈ Z. We see that

f(x) ∈ Wn = Vn+1 ª Vn ⇐⇒ f(x) ∈ Vn+1, f(x) ⊥ Vn.

By Lemma 1 of Chapter 5, certainly f(x) ∈ Vn+1 ⇐⇒ f(2x) ∈ Vn+2. We are going

to show that f(x) ⊥ Vn ⇐⇒ f(2x) ⊥ Vn+1. Indeed, note that for any h ∈ L2(R),

h(x) ∈ Vn ⇐⇒ h(2x) ∈ Vn+1, so any function in Vn+1 can be written as h(2x) with

some h(x) ∈ Vn. Now suppose f(x) ⊥ Vn, then

〈f(2x), h(2x)〉 =
∫ ∞

−∞
f(2x)h(2x)dx =

1
2

∫ ∞

−∞
f(u)h(u)du =

1
2
〈f, h〉 = 0.

So f(2x) ⊥ Vn+1. The other direction is similar. Hence

f(x) ∈ Wn ⇐⇒ f(2x) ∈ Vn+2, f(2x) ⊥ Vn+1 ⇐⇒ f(2x) ∈ Wn+1 = Vn+2 ª Vn+1.

¤

If some subspaces in L2(R) have the above property, then their complete or-

thonormal systems are related in the following way.

Lemma 4. Let K1 and K2 be subspaces of L2(R). If f(x) ∈ K1 ⇐⇒ f(2x) ∈ K2,

then the following are equivalent:

(a) {fn(x)}n∈Z is a complete orthonormal system of K1.

(b){√2fn(2x)}n∈Z is a complete orthonormal system of K2.

Proof. (a) =⇒ (b) From the fact that {fn(x)}n∈Z is an orthonormal system, it can

be checked that {√2fn(2x)}n∈Z is also an orthonormal system. Furthermore, The
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fact that {fn(x)}n∈Z ⊂ K1 clearly implies that {√2fn(2x)}n∈Z ⊂ K2. We will show

that the orthonormal system {√2fn(2x)}n∈Z is complete. By Lemma 4 of Chapter

I, it is equivalent to show that for any h ∈ K2, we have

||h||22 =
∑

n∈Z
|〈h,

√
2fn(2x)〉|2.

Indeed, for any h ∈ K2, there is a f ∈ K1 such that h(x) = f(2x). Now,

||h||22 =
∫ ∞

−∞
|h(x)|2dx =

∫ ∞

−∞
|f(2x)|2dx =

1
2

∫ ∞

−∞
|f(u)|2du =

1
2
||f ||22,

Also

〈h,
√

2fn(2x)〉 =
∫ ∞

−∞
h(x)

√
2fn(2x)dx =

∫ ∞

−∞
f(2x)

√
2fn(2x)dx

=
√

2
2

∫ ∞

−∞
f(u)fn(u)du =

1√
2
〈f, fn〉.

Note that {fn(x)}n∈Z is complete in K1, so for such f ∈ K1, we have

||f ||22 =
∑

n∈Z
|〈f, fn〉|2.

Now we see that

||h||22 =
1
2
||f ||22 =

1
2

∑

n∈Z
|〈f, fn〉|2 =

∑

n∈Z
|〈h,

√
2fn(2x)〉|2.

(b) =⇒ (a) can be similarly proved. We omit the details. ¤

Now we are ready to find an complete orthonormal system for each subspace Vn

and Wn.

Proposition 1. Let {Vn}n∈Z be a sequence of subspaces of L2(R) such that Vn =

{f ∈ L2(R)
∣∣for any j ∈ Z, f |[ j

2n , j+1
2n ) is constant }. Let Wn = Vn+1 ª Vn for each

n ∈ Z. Let H be the Haar function and

ϕ(x) =

{
1 0 ≤ x < 1

0 otherwise

then for for each n ∈ Z,

(a){√2nϕ(2nx− l)|l ∈ Z} is a complete orthonormal system of Vn.

(b){√2nH(2nx− l)|l ∈ Z} is a complete orthonormal system of Wn.

It should be clear that Proposition 1 is an immediate consequence of the Lemmas

and facts developed in this chapter. There is nothing much to prove. Finally, we

have
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Theorem 1. Let {Vn}n∈Z be a sequence of subspaces of L2(R) such that Vn = {f ∈
L2(R)

∣∣for any j ∈ Z, f |[ j
2n , j+1

2n ) is constant }. Let Wn = Vn+1 ª Vn for each n ∈ Z.

Let H be the Haar function and

ϕ(x) =

{
1 0 ≤ x < 1

0 otherwise

Let Hj,l(x) = 2
j
2 H(2jx− l) and ϕj,l(x) = 2

j
2 ϕ(2jx− l) for each j, l ∈ Z. Then for

any h ∈ L2(R) and for each j ∈ Z,

PVj+1h = PVj
h + PWj

h.

Specifically,

∑

l∈Z
〈h, ϕj+1,l〉ϕj+1,l =

∑

l∈Z
〈h, ϕj,l〉ϕj,l +

∑

l∈Z
〈h,Hj,l〉ϕj,l.

Proof. Note that Vj+1 = Vj ⊕ Wj for any j ∈ Z, so for any h ∈ L2(R), we can

consider the orthogonal projection of PVj+1h ∈ Vj+1 onto subspaces Vj and Wj .

Clearly by Proposition 4 of Chapter 5, we have

PVj+1h = PVj (PVj+1h) + PWj (PVj+1h) = PVj h + PWj h.

Now use the complete orthonormal systems of Vn’s and Wn’s obtained in Proposi-

tion 1 above and Proposition 3 of Chapter 5, we can easily obtain the explicit form

of PVj+1h = PVj h + PWj h. ¤

Note that

ϕj+1,k =





2
1

2j+1 x ∈ [
k

2j+1
,
k + 1
2j+1

)

0 otherwise

ϕj,l =





2
1
2j x ∈ [

2l

2j+1
,
2l + 2
2j+1

)

0 otherwise

and

Hj,l =





2
1
2j x ∈ [

2l

2j+1
,
2l + 1
2j+1

)

−2
1
2j x ∈ [

2l + 1
2j+1

,
2l + 2
2j+1

)

0 otherwise

So

Hj,l =
ϕj+1,2l − ϕj+1,2l+1√

2
.
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ϕj,l =
ϕj+1,2l + ϕj+1,2l+1√

2
.

Thus

〈h,Hj,l〉 =
〈h, ϕj+1,2l〉 − 〈h, ϕj+1,2l+1〉√

2
.

〈h, φj,l〉 =
〈h, ϕj+1,2l〉+ 〈h, ϕj+1,2l+1〉√

2
.

On the other hand, we also have

〈h, ϕj+1,2l〉 =
〈h, ϕj,l〉+ 〈h, Hj,l〉√

2
,

〈h, ϕj+1,2l+1〉 =
〈h, ϕj,l〉 − 〈h,Hj,l〉√

2
.

Finally, we obtain these so called Haar Decomposition and Reconstruction

Formulas. These formulas allow one to efficiently find the orthogonal projections

of functions onto subspaces Vn and Wn. Once we take the orthogonal projection of

any function f onto certain subspace Vj (for convenience, let us denote PVj f as fj),

then by using Decomposition formulas, it is very easy to further find its orthogonal

projection onto Vj−1 and Wj−1 . Denote PWj f as Wj , then fj = fj−1 +wj−1. And

this process can be repeated so that we can find orthogonal projections of fj−1

onto Vj−2 and Wj−2, hence fj = fj−2 + wj−1 + wj−1. Then this process can be

repeated once again to further decompose the original function. On the other hand

, if we have the orthogonal projections of a function onto various Vn and Wn, using

Reconstruction formulas we can recover the function very fast. This actually is one

of the reasons why wavelets are favored by people working on signal processing. We

will explain in class how this works using some signal processing example.


